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Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow
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Accurate evaluation of damping in laterally oscillating microstructures is challenging due to the complex
flow behavior. In addition, device fabrication techniques and surface properties will have an important effect on
the flow characteristics. Although kinetic approaches such as the direct simulation Monte Carlo (DSMC)
method and directly solving the Boltzmann equation can address these challenges, they are beyond the reach of
current computer technology for large scale simulation. As the continuum Navier-Stokes equations become
invalid for nonequilibrium flows, we take advantage of the computationally efficient lattice Boltzmann method
to investigate nonequilibrium oscillating flows. We have analyzed the effects of the Stokes number, Knudsen
number, and tangential momentum accommodation coefficient for oscillating Couette flow and Stokes’ second
problem. Our results are in excellent agreement with DSMC data for Knudsen numbers up to Kn=O(1) and
show good agreement for Knudsen numbers as large as 2.5. In addition to increasing the Stokes number, we
demonstrate that increasing the Knudsen number or decreasing the accommodation coefficient can also expe-
dite the breakdown of symmetry for oscillating Couette flow. This results in an earlier transition from quasi-
steady to unsteady flow. Our paper also highlights the deviation in velocity slip between Stokes’ second

problem and the confined Couette case.

DOI: 10.1103/PhysRevE.78.026706

I. INTRODUCTION

Oscillating microstructures are commonly used in modern
technology, e.g., microaccelerometers, inertial sensors, and
resonant filters [1-3]. Evaluation of the damping forces in
these miniaturized devices is difficult because of the com-
plex flow behavior. In addition to viscous and unsteady ef-
fects, it is necessary to consider nonequilibrium phenomena.
In this paper, we focus on understanding how nonequilibrium
and gas-surface interactions will affect the behavior of time-
periodic shear-driven gas flows in oscillating microstruc-
tures.

The departure from equilibrium is characterized by the
Knudsen number (Kn), defined as the ratio of the molecular
mean free path N\ to the characteristic length L. In general,
the Navier-Stokes equations with no-velocity-slip and no-
temperature-jump wall conditions are only appropriate when
Kn<0.001. However, the gas flow in micro and nanofluidic
devices is often in the slip (0.001 <Kn<0.1) or the transi-
tion regime (0.1<Kn<10). The direct simulation Monte
Carlo (DSMC) method can be employed to investigate the
flow physics in such unsteady nonequilibrium microflows
and important results of oscillatory flow characteristics have
been achieved [4—6]. Unfortunately, the statistical scattering
and computational requirements (memory and CPU) makes
DSMC inefficient, especially for low-speed, low-Kn flows.
Direct solution of the Boltzmann equation offers an alterna-
tive kinetic approach that can provide an accurate description
of nonequilibrium flow [7-10]. However, due to the inherent
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nonlinearity, complexity of the collision integral, and the
multidimensionality of the equation, present solutions are
limited to relatively simple geometries. In contrast to kinetic
methods, continuum-based models with slip boundary condi-
tions, though simple and convenient, fail to predict critical
flow characteristics in the Knudsen layer, which extends a
few molecular mean free paths away from the wall
[8,11-16]. Within this layer, the linear constitutive relation-
ships for shear stress and heat flux, as assumed in the Navier-
Stokes-Fourier equations, are no longer valid [17].

A new computationally efficient method is required to in-
vestigate damping forces in micro and nano oscillating de-
vices. Ideally, the method should have an accuracy that is
comparable to DSMC or direct solution of the Boltzmann
equation. In this paper, we introduce such a method—the
lattice Boltzmann (LB) model—to investigate nonequilib-
rium oscillatory gas flows. Due to its intrinsically kinetic
nature, the LB approach has recently attracted considerable
research interest for modeling nonequilibrium gas flow
[18-34]. Compared to other kinetic methods, the LB model
has a significantly lower computational cost and allows con-
venient treatment of complex geometries. In addition, the
lattice Boltzmann model does not suffer from the closure and
boundary condition problems associated with higher-order
continuum approaches such as Grad’s method of moments
[35]. More recently, higher-order LB models [36-38] and LB
models incorporating the wall effect on the local mean free
path [16,30,33,39] have captured the nonlinear behavior of
the stress and heat flux in the Knudsen layer. However, to the
best of the authors’ knowledge, the lattice Boltzmann model
has not been applied to oscillatory nonequilibrium flows.
Since the LB method is second-order accurate in space and
time, it belongs to the family of explicit, second-order time-
marching schemes [40,41]. It can capture the time evolution
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FIG. 1. Schematic diagram of the oscillatory flow cases: con-
fined Couette flow occurs between the stationary substrate at y=0
and the oscillating plate, located at y=L, whereas the semi-infinite
Stokes’ second problem propagates into the unbounded medium
above y=L.

naturally without any additional iteration and is therefore a
very effective computational method for describing unsteady
nonequilibrium flows.

In this paper, we extend the LB model by incorporating
the wall effect on the local mean free path, as discussed in
previous work [16]. We then investigate unsteady nonequi-
librium Couette flow between two infinite parallel plates and
compare the results with available DSMC data. After evalu-
ating our model’s performance, we study the dynamic behav-
ior of oscillating Couette flow and Stokes’ second problem,
which is associated with an unbounded gas above an oscil-
lating plate.

II. NONEQUILIBRIUM LATTICE BOLTZMANN MODEL

We consider a planar Couette flow consisting of a station-
ary lower plate at y=0 and a moving upper plate at y=L,
with both plates maintained at the same temperature 7. The
upper plate oscillates harmonically in the lateral direction
with velocity u=u,, sin(wt), as illustrated in Fig. 1, where @
is the oscillatory frequency and u,, is the velocity amplitude
of the oscillating plate. The oscillatory flow can be charac-
terized by the Stokes’ number B, which represents the bal-
ance between the unsteady and viscous effects, and can be
defined by

wl?

B=y—"> (1)

Yo

where v, is the kinematic viscosity of the gas.
The evolution equation for the lattice Bhatnagar-Gross-
Krook (BGK) model is given by [42]

I, Mu_ S S 2)
ot ox; 1)

where f; is the velocity distribution function, f; is the dis-
tribution function at equilibrium, ¢;; is the lattice velocity,
and ¢ is the relaxation time. After discretizing Eq. (2), we
obtain
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flx+edtt+ ) — fi(x,t) =— lr[fk(x,t) -fx,n], (3)

where 7= ¢/ dt is the nondimensional relaxation time and ot
is the time step.

For a two-dimensional, thirteen-velocity lattice model
(D2Q13) [39], the equilibrium distribution function can be
expressed as

2 3
F= pa| 1+ et (egitt;) _u (exitt;)
k , c? 2¢ 2¢2 2¢°

s s s s

3(egty) (uu;)
20? ’
3 = h k=1-4 w=—, k=5-%
w0_8’ wk_lza - - wk_16’ - — 0O,
o= k=9-12, (4)

where ¢, is the sound speed of the lattice fluid, p is the
density, and u, is the macroscopic velocity. The sound speed
is given by cf:cz/2, where ¢=\2RT and R is the gas con-
stant. The lattice velocities, e, are given by

6():0,
ey = cos<(k_l)w>,sin<(k_l)ﬂ->]c, k=1-4,
i 2 2
[ ((k—S)ﬂ' 71') _((k—S)Tr 77)} -
ex=|cos| ———+ —|,sinl ————+ — | |V2c,
L 2 4 2 4
k=5-8,
er= cos((k_l)ﬂ),sin<(k_1)w>]20, k=9-12. (5)
L 2 2

In the absence of wall effects, we can establish a relation-
ship between the mean free path and the relaxation time
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FIG. 2. Dynamic velocity profiles for Kny=0.1 and =4.0
where the symbols represent the DSMC data obtained from Hadji-
constantinou [8]. The stationary and oscillating plates are located at
y/L=0 and 1, respectively.
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FIG. 3. Dynamic velocity profiles for Kny=0.2 and 8=2.0,
where the symbols represent the DSMC data obtained from Hadji-
constantinou [8].

based on kinetic theory, i.e., \g=(7— %) 5y\E% [30]. There-
fore, for a D2Q13 lattice BGK model, the local relaxation
time can be determined by introducing the local mean free
path, which takes into account the effect of the wall as fol-
lows:

N |mec 1
T= " __KnoNL+_, (6)

)\O 8¢ s 2
where N; =L/ dy is the number of lattices over the character-
istic length, dy is the lattice spacing, and Kn, is the Knudsen
number based on the mean free path A\, evaluated from X\
=(uo/ p)NTRT/2, where p is the pressure and u is the dy-
namic viscosity. Molecular gas-wall interactions are impor-
tant in rarefied flows and geometrical effects on the spatial
variation of the local mean free path need to be taken into
account [43,44]. By considering the molecular interactions
close to the wall, we have established a relationship between
the local mean free path A and the macroscopic property-
based mean free path . If we consider an ideal gas bounded

(e;~u
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FIG. 4. Dynamic velocity profiles for Kny,=0.4 and B=1.0,
where the symbols represent the DSMC data obtained from Hadji-
constantinou [8].

by two parallel plates at y=0 and y=L, the local mean free
path of the molecules at a distance y (0<y<L) from the
lower plate can be calculated as follows [16]:

Ny)=No| 1+ (£= Dexp(-§) - & f ! exp(- t)dt] ;
3
(7)

where é=y/\ for those molecules moving towards y=0 and
&=(L-y)/\, for those moving towards y=L. Since a mol-
ecule can move towards the two walls with equal probability,
the local mean free path of all molecules in the flow domain
can be determined by averaging these two parts. For y=0 or
y=L, we have é=L/N\,,.

To capture the slip velocity at the wall, the Maxwellian
kinetic boundary condition accounting for the tangential mo-
mentum accommodation coefficient is employed [26,45].
The unknown reflected distribution function f; on the wall
can be determined from the incident distribution function fj,
as follows:

)-n<0|(ei - uwall) : n|fi(x’t + 5t)

wall

fk(X’t'l' 5t) = (1 - Ct’)fk/(X,l+ 5t)|(ek’ - uwall) : Il| +a

where u,,,; and p,,,,;; are the velocity and density at the wall,
respectively, and n is the unit normal. The tangential mo-
mentum accommodation coefficient «, represents the frac-
tion of impinging molecules absorbed and reemitted dif-
fusely, while (I1—«) is the fraction of molecules reflected
specularly from the surface. For fully diffuse reflection at the
wall, a=1.

In the simulations, the oscillation frequency w is calcu-
lated from w=2m/(T,dt), where T, represents the period of
the imposed oscillatory velocity normalized by ot. The local

(ej—“wa[[)-n>0|(ej - uwall) : n|f;:’q(x’ pwall»uwall)

kq(Xs pwalbuwall)’ (8)

kinematic viscosity in the D2Q13 lattice BGK model was
calculated from v=(r—0.5)c35t.

III. OSCILLATORY COUETTE FLOW
A. Dynamic velocity profiles

Figures 2—4 compare the dynamic velocity profiles from
the present lattice Boltzmann model (LBM) against the
DSMC data presented by Hadjiconstantinou [8]. The results
show that inertial effects become significant as the oscillation
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FIG. 5. Dynamic velocity profiles for Kny=0.1 and B=4.0
showing the effect of the tangential momentum accommodation
coefficient.

frequency increases. It can be seen that both the bulk flow
velocity and the velocity in the Knudsen layer are in excel-
lent agreement with DSMC results indicating that the pro-
posed LB model can successfully capture the characteristics
of the Knudsen layer in unsteady flows. Figure 5 illustrates
the effect of the tangential momentum accommodation coef-
ficient on the dynamic velocity profiles and indicates that the
slip velocity increases as the value of a decreases.

B. Velocity history

Figure 6 shows the history of the streamwise velocity at
various locations between the stationary and oscillating
plates for Kny,=1.0. In Fig. 6(a), which shows a typical qua-
sisteady flow behavior, it can be seen that the velocity am-
plitude increases as y/L—1, i.e., as we approach the oscil-
lating plate. However, at higher Stokes numbers, as shown in
Fig. 6(b), the time history exhibits a more complex pattern
because the velocity amplitude decays rapidly away from the
moving wall. In contrast, the phase lag can be seen to grow
as we move further away from the oscillating wall. The re-
sults illustrate that the phase difference between the velocity
signal imposed on the oscillating wall and the signal felt at
the stationary wall increases with Stokes number B. How-
ever, as shown in Fig. 7, increasing the Knudsen number has
only a small effect on the phase difference between the os-
cillating and stationary walls. Comparing the results from
our LB model against the DSMC data presented by Bahuku-
dumbi et al. [13] shows that the proposed lattice Boltzmann
model provides satisfactory results for Knudsen numbers as
large as 2.5.

Figure 8 presents the velocity distribution for a Stokes
number of B=5. It can be seen that the phase difference
between the velocity signals at the various locations becomes
significant demonstrating the importance of inertial effects as
the oscillation frequency increases. We also compare our re-
sults with the analytical slip-flow solution of the Navier-
Stokes equations given by Park ef al. [15]. The deviations at
the walls are largely due to the fact that the analytical solu-
tion does not take account of the Knudsen layers. We have
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FIG. 6. Streamwise velocity history for Kny=1.0, and (a) B
=0.25; (b) B=2.5, where the stationary and oscillating plates are
located at y/L=0 and 1, respectively.

also investigated the effect of the tangential momentum ac-
commodation coefficient for high Stokes number flows. Fig-
ure 9 shows the streamwise velocity history for 8=5.0 and
Kny=0.1 for values of « ranging from 0.5 to 1.0. As the
accommodation coefficient decreases, the phase lag increases
in comparison to the no-slip continuum solution.

C. Velocity amplitude

Figures 10 and 11 show the velocity amplitude between
the two surfaces normalized by u,,. The LB results are again
in very good agreement with the DSMC data given by Park
et al. [15]. Although the cases for 8<0.25 are usually clas-
sified as quasisteady flow [15], Figure 10 indicates that the
velocity profile can lose its symmetry if the Knudsen number
is sufficiently large. When the Knudsen number increases,
the gas becomes more dilute so that the frequency of colli-
sions between the gas molecules is reduced. It therefore takes
longer to transfer momentum from the oscillating plate
which leads to an earlier transition from a quasisteady state
to an unsteady flow condition. Figure 11 shows the effect of
increasing the Stokes number when the Knudsen number is
fixed. For $=0.25 and 1.0, the velocity amplitudes are very
similar. However, for higher Stokes numbers, the deviation
from the symmetrical velocity profile becomes significant
and the slip velocity at the stationary wall is much smaller
than that at the oscillating wall. In addition, as the Stokes
number is increased, the slip velocity at the stationary wall
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FIG. 7. Streamwise velocity history for B=0.25 and

(a) Kng=0.1; (b) Kny=2.5. The symbols represent the DSMC data
at two locations with y/L=0.01 and 0.99 given by Bahukudumbi
et al. [13].

decreases whilst the slip at the oscillating wall increases.
Figure 11 shows that when the Stokes number is large, the
flow is confined to a near-wall region or bounded Stokes’
layer [15].

Figure 12 shows the effect of the Knudsen number on the
velocity amplitude at moderate and high Stokes numbers.
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FIG. 8. Streamwise velocity history for Kny=0.1 and 8=5.0,
where y/L indicates the distance from the stationary plate y/L=0.
The oscillating plate is located at y/L=1. The symbols represent the
analytical solution of the Navier-Stokes equations given by Park et
al. [15]: O, y/L=0.5; A, y/L=0.6; V, y/L=0.7; ¢, y/L=0.8; X,
y/L=0.9; @, y/L=1.0.
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FIG. 9. Streamwise velocity history for different accommoda-
tion coefficients at Kny=0.1, 8=5.0, and (a) y/L=0.99; (b) y/L
=0.01. The results for a continuum flow with Kn=0 is presented for
comparison.

The quasisteady flow description is still appropriate for the
case of B=1.0 and Kny=0.1 because the velocity amplitude
remains symmetrical. However, quasisteady flow breaks
down when the Knudsen number reaches 0.5, as can be
clearly seen in Fig. 12(a). Although the magnitude of the slip
velocity at the oscillating plate increases with the Knudsen
number, a more complicated behavior is exhibited at the sta-
tionary plate. The results also show that the transition from
quasisteady flow to unsteady flow occurs at a modest Stokes

1.00 ,

0.00 0.25 0.50 0.75 1.00
y/L

FIG. 10. Streamwise velocity amplitude at various Knudsen
numbers for S=0.25. The symbols represent the DSMC data given
by Park et al. [15].
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FIG. 11. Streamwise velocity amplitude at various Stokes num-
bers for Kny=0.1. The symbols represent the DSMC data given by
Park et al. [15].

number for highly nonequilibrium flows. From Figs. 11 and
12, it can be seen that the Stokes number rather than the
Knudsen number is important in determining the thickness of
the bounded Stokes layer. Conversely, the Knudsen number
is more important than the Stokes number in determining the
velocity slip at the oscillating wall. We have also examined
the effect of the accommodation coefficient o and have
found that the flow experiences an earlier transition from
quasisteady to unsteady conditions as the accommodation
coefficient is decreased. Even at small Stokes numbers, re-
ducing the accommodation coefficient can expedite the
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0.00
@ 0.00 0.25 o.soy JL 0.75 1.00
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(b) 0.00 0.25 0.50 WL 0.75 1.00

FIG. 12. Streamwise velocity amplitude at various Knudsen
numbers: (a) 8=1.0. (b) B=2.5.
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FIG. 13. Shear stress on the oscillating plate as a function of the
Knudsen number. The symbols represent the DSMC data given by
Hadjiconstantinou [8].

breakdown of the symmetrical velocity distribution. When
the tangential momentum accommodation coefficient de-
creases, the amount of slip at the plates will increase, as
illustrated in Fig. 9. In addition, the phase lag will increase
and the gas becomes less responsive to the plate oscillation,
effectively increasing the inertia of the system.

D. Shear stress

In contrast to Navier-Stokes approaches, it is convenient
to evaluate the shear stress independently of the velocity
fields in lattice Boltzmann models. This is because the LB
method is kinetic in nature and the shear stress can be com-
puted directly from the distribution function. Figure 13
shows the predicted shear stress on the oscillating wall, nor-
malized by the continuum limit for steady planar Couette
flow, 7,=uou,,/L. As the Stokes number increases, the wall
shear stress increases especially at low Knudsen numbers.
Good agreement is observed between our LB results and the
DSMC data given by Hadjiconstantinou [8] for Knudsen
numbers as large as 2.5.

IV. COMPARISON OF OSCILLATING COUETTE FLOW
AND STOKES’ SECOND PROBLEM

In practical applications involving laterally oscillating
plates, not only should the damping force between the two
parallel plates be accounted for but also the damping due to
the ambient gas above the oscillating plate. It is informative,
therefore, to compare the dynamic behavior of confined Cou-
ette flow with Stokes’ second problem, which considers the
motion of an unbounded gas above an oscillating flat plate.

To simulate Stokes’ second problem, we applied a station-
ary wall condition at y=10L. In addition, we adopted an
extrapolation scheme to obtain the unknown distribution
function at the upper boundary which was placed sufficiently
far away from the oscillating plate to have a negligible in-
fluence on the flow field. Figure 14 shows the dynamic ve-
locity profiles for both the confined and unconfined cases at
intervals of wt=/4 over half a period. The presented veloc-
ity profile above the oscillating plate is a strongly damped
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FIG. 14. Dynamic velocity profiles for confined Couette flow
and Stokes’ second problem. The location of the oscillating plate is
indicated by a vertical solid line at (a) y(w/vy)">=4 and (b)
y(w/v)?=2. The stationary plate is located at y(w/vy)"?>=0. Os-
cillatory Couette flow occurs between the stationary and moving
plates whilst Stokes’ second problem propagates away from the
oscillating plate into the unbounded region.

oscillation of exponentially decaying amplitude. The velocity
is negligible beyond the penetration depth, which is defined
as the distance above the moving plate where the amplitude
of the oscillation has decreased to one percent of the wall
velocity u,,. In Stokes’ second problem, the rarefaction is
usually characterized by defining the Knudsen number as
NoVw/ vy. Figure 14 shows that the velocity profiles on both
sides of the oscillating plate are similar up to Kny=0.2 but
start to show differences as the Knudsen number continues to
increase. This is confirmed in Fig. 15, which shows the ve-
locity amplitude for both the confined and unbounded cases.
It can be seen that the slip velocity either side of the oscil-
lating plate starts to differ when the Knudsen number ap-
proaches Kny=0.6. This can be explained by the fact that the
Knudsen layers at the stationary and oscillating plates start to
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FIG. 15. Velocity amplitude showing the effect of the Knudsen
number on Couette flow and Stokes’ second problem. The vertical
solid line at y(w/v,)"">=4 represents the location of the oscillating
plate.

overlap when the Knudsen number exceeds 0.5. In previous
studies, this Knudsen layer interference has usually been ig-
nored.

V. CONCLUSIONS

The nonequilibrium flow characteristics in laterally oscil-
lating structures have been investigated using an extended
lattice Boltzmann model that can account for the effects of
the Knudsen layer. We first investigate oscillatory Couette
flow between two infinite parallel plates. The lattice Boltz-
mann model is shown to be in very good agreement with
available DSMC data for Knudsen numbers up to ~2.5. In-
creasing the Stokes number and the Knudsen number or de-
creasing the tangential momentum accommodation coeffi-
cient is shown to lead to an earlier transition from
quasisteady to unsteady flow. We then compare the dynamic
behavior of confined Couette flow with Stokes’ second prob-
lem. Our model is able to account for the overlapping Knud-
sen layers in the Couette problem and can capture the devia-
tion in slip velocity between the confined and unbounded
cases. The study demonstrates that the lattice Boltzmann
model is a very effective computational method for describ-
ing unsteady nonequilibrium flows.
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